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Abstract

In analogy with conventional quantum mechanics, non-commutative quantum
mechanics is formulated as a quantum system on the Hilbert space of Hilbert–
Schmidt operators acting on non-commutative configuration space. It is
argued that the standard quantum mechanical interpretation based on positive
operator valued measures, provides a sufficient framework for the consistent
interpretation of this quantum system. The implications of this formalism for
rotational and time reversal symmetry are discussed. The formalism is applied
to the free particle and harmonic oscillator in two dimensions and the physical
signatures of non-commutativity are identified.

PACS number: 11.10.Nx

1. Introduction

There seems to be growing consensus that our notion of space-time has to be drastically
revised in a consistent formulation of quantum mechanics and gravity [1, 2]. One possible
generalization, suggested by string theory [3], that has attracted much interest recently is
that of non-commutative space-time [4]. Despite a number of investigations into the possible
physical consequences of non-commutativity in quantum mechanics and quantum-mechanical
many-body systems [5–8], quantum electrodynamics [9–11], the standard model [12] and
cosmology [13, 14], our understanding of the physical implications of non-commutativity is
still in its infancy and even controversial [15]. Part of the difficulty in developing a thorough
understanding of the physical implications of non-commutativity, is the lack of a systematic
formulation and interpretational framework of non-commutative quantum mechanics. Indeed,
even a simple system such as a particle confined to a spherical well presents a challenge as it
is difficult to give meaning to the notion of a well in non-commutative space. This problem
was solved only recently [16] by using the notion of projection operators on non-commutative
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configuration space to define piecewise constant potentials. Here we develop the notions
of [16] into a fully fledged formulation and interpretational framework for non-commutative
quantum mechanics.

For simplicity we confine the discussion here to two-dimensional systems. The extension
to three dimensions is more involved due to the necessity to identify the correct representation
of the rotational symmetry on both the non-commutative configuration space and the quantum
Hilbert space. These issues will be discussed in a forthcoming publication [17].

In section 2, we develop the formalism and interpretational framework of non-
commutative quantum systems. This includes the derivation of a continuity equation and the
conservation of probability. The results of section 2 are extended in section 3 to include non-
commutative momenta. In section 4 we discuss the implications of this formalism for rotational
and time reversal symmetry. In section 5 we apply this formalism to the free particle problem
and the harmonic oscillator and identify the physical consequences of non-commutativity.
Finally, we close in section 6 with a discussion, conclusion and future perspective.

2. Formalism

We develop the formalism of non-commutative quantum mechanics in complete analogy with
commutative quantum mechanics. To fully exploit this analogy, we briefly recall the wave
mechanical formulation (position representation) of commutative quantum mechanics. A
particle moving in d-dimensions is described in wave mechanics by a configuration space
Rd and a Hilbert space L2 of square integrable wavefunctions ψ(x) over Rd . The inner
product on L2 is (φ,ψ) = ∫

ddxφ∗(x)ψ(x). We denote the elements of this Hilbert space by
ψ(x) ≡ |ψ〉 and the elements of its dual (linear functionals) by 〈ψ |, which maps elements of L2

onto complex numbers by 〈φ|ψ〉 = (φ,ψ). The physical interpretation of this mathematical
framework is well known and discussed in e.g. [19].

A key element in the actual construction of the quantum system above, as well as for the
identification of the observables, is to find a unitary representation of the abstract Heisenberg
algebra

[xi, pj ] = i h̄δi,j ,

[xi, xj ] = 0,

[pi, pj ] = 0.

(1)

in terms of operators x̂i and p̂i acting on the space of square integrable functions. This is just
the well-known Schrödinger representation

x̂iψ(x) = xiψ(x), p̂iψ(x) = −i h̄
∂ψ(x)

∂xi

, (2)

which acts irreducibly and, from the Stone–von Neumann theorem, is known to be unique up
to unitary transformations. We take this mathematical structure and its physical interpretation
as our cue for developing the mathematical structure and physical interpretation of non-
commutative systems.

We start by considering non-commutative configuration space. Restricting to two
dimensions, the coordinates of non-commutative configuration space satisfy the commutation
relation

[x̂i , x̂j ] = i θεi,j , (3)
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with θ being a real positive parameter and εi,j the completely anti-symmetric tensor with
ε1,2 = 1. It is convenient to define the creation and annihilation operators

b = 1√
2θ

(x̂1 + ix̂2), b† = 1√
2θ

(x̂1 − ix̂2), (4)

that satisfy the Fock algebra [b, b†] = 1. The non-commutative configuration space is then
isomorphic to boson Fock space

Hc = span

{
|n〉 ≡ 1√

n!
(b†)n|0〉

}n=∞

n=0

, (5)

where the span is taken over the field of complex numbers.
The next step is to introduce the equivalent of the Hilbert space of square integrable

function in which the physical states of the system are to be represented. This mathematical
structure is actually well known and a natural generalization of the space of square integrable
functions. We consider the set of Hilbert–Schmidt operators acting on non-commutative
configuration space

Hq = {ψ(x̂1, x̂2) : ψ(x̂1, x̂2) ∈ B (Hc) , trc(ψ(x̂1, x̂2)
†ψ(x̂1, x̂2)) < ∞}. (6)

Here trc denotes the trace over non-commutative configuration space and B (Hc) the set of
bounded operators on Hc. This space has a natural inner product and norm

(φ(x̂1, x̂2), ψ(x̂1, x̂2)) = trc(φ(x̂1, x̂2)
†ψ(x̂1, x̂2)) (7)

and forms a Hilbert space [18]. This space is the analog of the space of square integrable
wavefunctions of commutative quantum mechanics and to distinguish it from the non-
commutative configuration space Hc, which is also a Hilbert space, we shall refer to it as
quantum Hilbert space and use the footnotes c and q to make this distinction. We also
use the notation |·〉 for elements of non-commutative configuration space, while elements
of the quantum Hilbert space are denoted by ψ(x̂, ŷ) ≡ |ψ) and the elements of its
dual (linear functionals) by (ψ |, which maps elements of Hq onto complex numbers by
(φ|ψ) = (φ,ψ) = trc(φ(x̂1, x̂2)

†ψ(x̂1, x̂2)). We also need to be careful when denoting
Hermitian conjugation to distinguish between these two spaces. We reserve the notation † to
denote Hermitian conjugation on non-commutative configuration space and the notation ‡ for
Hermitian conjugation on quantum Hilbert space.

The abstract Heisenberg algebra is now replaced by the non-commutative Heisenberg
algebra. In two dimensions this reads

[xi, pj ] = i h̄δi,j ,

[xi, xj ] = i θεi,j ,

[pi, pj ] = 0.

(8)

A unitary representation of this algebra in terms of operators X̂i and P̂i acting on the quantum
Hilbert space (6) with inner product (7), which is the analog of the Schrödinger representation
of the Heisenberg algebra, is easily found to be

X̂iψ(x̂1, x̂2) = x̂iψ(x̂1, x̂2),

P̂iψ(x̂1, x̂2) = h̄

θ
εi,j [x̂j , ψ(x̂1, x̂2)],

(9)

i.e., the position acts by left multiplication and the momentum adjointly. We use capital
letters to distinguish operators acting on quantum Hilbert space from those acting on non-
commutative configuration space. It is also useful to introduce the following quantum
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operators

B = 1√
2θ

(X̂1 + iX̂2),

B‡ = 1√
2θ

(X̂1 − iX̂2),

P̂ = P̂1 + iP̂2,

P̂ ‡ = P̂1 − iP̂2.

(10)

We note that P̂ 2 = P̂ 2
1 + P̂ 2

2 = P ‡P = PP ‡. These operators act as follows

Bψ(x̂1, x̂2) = bψ(x̂1, x̂2),

B‡ψ(x̂1, x̂2) = b†ψ(x̂1, x̂2),

Pψ(x̂1, x̂2) = −i h̄

√
2

θ
[b,ψ(x̂1, x̂2)],

P ‡ψ(x̂1, x̂2) = i h̄

√
2

θ
[b†, ψ(x̂1, x̂2)].

(11)

We now take the interpretational framework of commutative quantum mechanics to apply
with the simple replacement of L2 by Hq . Although this provides a consistent interpretational
framework, the measurement of position needs more careful consideration. The problem with
a measurement of position is not that the standard axioms of quantum mechanics do not apply
to the Hermitian operators X̂i , rather the problem is that these operators do not commute
and thus a precise measurement of one of these observables leads to total uncertainty in the
other. Yet, we would like to preserve the notion of position in the sense of a particle being
localized around a certain point. The best we can do in the non-commutative situation is to
construct a minimal uncertainty state in non-commutative configuration space and use that to
give meaning to the notion of position. The issue of position measurement in non-commutative
space was also considered in [21], but the approach described below is different and utilizes
the standard notion of operator valued measures.

The minimal uncertainty states on non-commutative configuration space, which is
isomorphic to the boson Fock space, are well known to be the normalized coherent states
[22]

|z〉 = e−zz̄/2 ezb† |0〉, (12)

where z = 1√
2θ

(x1 + ix2) is a dimensionless complex number. These states provide an
overcomplete basis on the non-commutative configuration space. Corresponding to these
states we can construct a state (operator) in quantum Hilbert space as follows

|z) = |z〉〈z|. (13)

Writing the trace in terms of coherent states and using |〈z|w〉|2 = e−|z−w|2 one easily verifies
that this is indeed a Hilbert–Schmidt operator. These states also have the property

B|z) = z|z), (14)

which leads to the natural interpretation of (x1, x2) as the dimensionful position coordinates.
Another property of these states is that they provide an overcomplete set on quantum Hilbert
space and a resolution of the identity in the form

1q =
∫

dz dz̄

π
|z) e

←
∂z̄

→
∂z (z| =

∫
dx1 dx2

2πθ
|z) e

←
∂z̄

→
∂z (z|, (15)
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with ∂z̄ ≡ ∂
∂z̄

and ∂z ≡ ∂
∂z

. To prove this identity, consider a Hilbert–Schmidt operator ψ

acting on non-commutative configuration space, which is an element of quantum Hilbert space
denoted by ψ = |ψ). It follows that (z|ψ) = 〈z|ψ |z〉. Next we make use of the well-known
result that any operator ψ on boson Fock space (non-commutative configuration space) can
be written as [22]

ψ = |ψ) =
∫

dz dz̄

π
|z〉〈z|[e−∂z̄∂z〈z|ψ |z〉],

=
∫

dz dz̄

π
|z) e−∂z̄∂z (z|ψ),

=
∫

dz dz̄

π
|z) e

←
∂z̄

→
∂z (z|ψ). (16)

In the last step the exponent was expanded and a term by term partial integration performed,
keeping in mind that boundary terms vanish due to the Gaussian factor in the coherent state.
The result now follows immediately.

With these results in place we can set up an interpretational framework for the
measurement of position, by noting that the following operators

πz = 1

2πθ
|z) e

←
∂z̄

→
∂z (z|,

∫
dx1 dx2πz = 1q (17)

provide an operator valued measure in the sense of [19]. We can then give a consistent
probability interpretation by assigning the probability of finding the particle at position (x1, x2),
given that the system is described by the pure state density matrix ρ = |ψ)(ψ |, to be

P(x1, x2) = trq (πzρ) = (ψ |πz|ψ) � 0,∫
dx1 dx2P(x1, x2) =

∫
dx1 dx2(ψ |πz|ψ) = (ψ |ψ) = 1,

(18)

where we assumed the states |ψ) to be normalized.
A final point to check is the conservation of probability. We must show that the norm

of the state is preserved under time evolution as in the commutative case. To be specific, we
consider a Hamiltonian acting on the quantum Hilbert space

H = P 2

2m
+ V (X̂1, X̂2). (19)

We assume that the potential V (x̂1, x̂2), viewed as an operator acing on non-commutative
configuration space, is Hermitian, i.e., V †(x̂1, x̂2) = V (x̂1, x̂2) (the equivalent of requiring the
potential to be real in commutative quantum mechanics). The time-dependent Schrödinger
equation reads

i h̄
∂ψ(x̂1, x̂2, t)

∂t
= Hψ(x̂1, x̂2, t). (20)

Recalling that the operators ψ(x̂1, x̂2, t) act on non-commutative configuration space, we can
multiply this equation from the left with ψ †(x̂1, x̂2, t) and its Hermitian conjugate, taken w.r.t.
the inner product on configuration space, by ψ(x̂1, x̂2, t). Subtracting the two equations we
obtain the analog of the continuity equation

∂

∂t
ρ = [x̂2, j1] + [x̂1, j2], (21)

with
ρ = ψ †(x̂1, x̂2, t)ψ(x̂1, x̂2, t),

j1 = h̄

2mi θ2
(ψ †(x̂1, x̂2, t)[x̂2, ψ(x̂1, x̂2, t)] − [x̂2, ψ

†(x̂1, x̂2, t)]ψ(x̂1, x̂2, t)),

j2 = h̄

2mi θ2
(ψ †(x̂1, x̂2, t)[x̂1, ψ(x̂1, x̂2, t)] − [x̂1, ψ

†(x̂1, x̂2, t)]ψ(x̂1, x̂2, t)).

(22)
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Tracing this equation over configuration space, the right-hand side vanishes as it is a
commutator and we assumed Hilbert–Schmidt operators (equivalent of square integrability
for which the boundary terms vanish) and we conclude ∂

∂t
trc(ψ

†ψ) = ∂
∂t

(ψ |ψ) = 0, which is
the statement of probability conservation.

The formalism and interpretational framework is now in place and in the next sections we
explore the consequences of this formalism further.

3. Non-commutative momenta

In the previous section we have considered the case where only the coordinates are non-
commutative. This was also necessary to write down the representation (9), which requires
commuting momenta to be consistent. However, often one wants to consider systems in which
the momenta are also non-commutative, e.g., in the presence of a magnetic field. Let us
therefore consider the following set of commutation relations

[xi, pj ] = i h̄δi,j ,

[xi, xj ] = i θεi,j ,

[pi, pj ] = iγ εi,j .

(23)

To apply the formalism of section 2, we would like to bring these commutation relations
in the same form as (8). It is well known that this can be achieved through an appropriate
linear transformation on momenta and coordinates. Indeed, even (8) can be expressed in
terms of commuting momenta and coordinates, the so-called Bopp shift. However, if the
momenta get mixed in with the coordinates under this transformation, this generically leads to
a highly non-local Hamiltonian for any non-trivial potential. This is indeed the disadvantage
of the Bopp shift. In this approach the solution of the Schrödinger equation becomes very
difficult for any potential other than the harmonic oscillator. On the other hand, if we take
the Hamiltonian to be quadratic in momenta, we can safely mix coordinates with momenta
and at most generate an additional linear and quadratic term in the coordinates. We therefore
consider a transformation to new coordinates yi and momenta πi given by

yi = xi, πi = αpi + βεi,j xj . (24)

A simple calculation shows that these coordinates and momenta satisfy (8) with the following
choices of α and β:

α = ±h̄√
h̄2 − γ θ

, β = h̄

θ
(1 − α). (25)

We can now apply the formalism of section 2 to these coordinates and momenta, while
maintaining the potential as a function of coordinates only. Note, however, that there is a
critical value of the parameter γ = h̄2

θ
such that for γ < h̄2

θ
this representation is unitary,

but for γ > h̄2

θ
it loses its unitarity. In the latter region one can make a transformation to

unitary commuting coordinates, but non-commuting momenta. The formalism of section 2
can then still be applied, provided that the action of the momenta on the quantum Hilbert
space is defined by left multiplication, while the action of the coordinates is defined through
the adjoint action, which leads to a very complex action of the potential. The existence of this
critical point was also observed in [20], although there the transformation was constructed such
that the momenta commute with the coordinates and at the critical value of γ the momenta
are in the center of the algebra. Close to this point it was observed that the Hamiltonian can
be expressed in terms of su(2) or su(1, 1) generators. Keeping in mind that these are two

6
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real forms of the same complex algebra, A1, this is reminiscent of our findings above. The
physical meaning of the region with γ > h̄2

θ
still needs further investigation, possibly along

the lines suggested in [20], but we do not pursue this issue further here. In what follows we
therefore restrict our attention to commuting momenta.

4. Symmetries

We start with the rotational symmetry in the plane. We are looking for an operator that
generates rotations in the non-commutative configuration space. This is easily found to be the
operator

z = −i

2θ

(
x̂2

1 + x̂2
2

)
. (26)

It satisfies the commutation relations

[z, x̂1] = −x̂2, [z, x̂2] = x̂1, (27)

i.e., it generates rotations around the z-axis. Setting U = eφz finite rotations are obtained by

x̂ ′
1 = U †x̂1U = x̂1 cos φ + x̂2 sin φ, x̂ ′

2 = U †x̂2U = x̂2 cos φ − x̂1 sin φ. (28)

In analogy with commutative quantum mechanics, we can now derive the transformation
a rotation on the non-commutative configuration space induces on the quantum Hilbert space:

ψ(x̂ ′
1, x̂

′
2) = ψ(U †x̂1U,U †x̂2U, ) = U †ψ(x̂1, x̂2)U. (29)

For infinitesimal rotation δφ this reads

ψ(x̂ ′
1, x̂

′
2) = ψ(x̂1, x̂2) + δφ[ψ(x̂1, x̂2), z]

= ψ (x̂1, x̂2) + δφ

(−i

h̄

) (
X̂1P̂2 − X̂2P̂1 +

θ

2h̄
P̂ 2

)
ψ(x̂1, x̂2)

= e(
−iδφ

h̄ )Lzψ (x̂1, x̂2) , (30)

where we have identified the quantum angular momentum operator as

Lz =
(

X̂1P̂2 − X̂2P̂1 +
θ

2h̄
P̂ 2

)
. (31)

The next issue we discuss is time reversal symmetry. In commutative quantum mechanics
the antiunitary time reversal operator � corresponds to complex conjugation. In the non-
commutative case one easily infers from the time-dependent Schödinger equation that � must
be Hermitian conjugation on non-commutative configuration space, i.e.,

�ψ(x̂1, x̂2) = ψ †(x̂1, x̂2). (32)

From this one infers the relations

�X̂i�
−1 = X̂i +

θ

h̄
εi,j P̂j ,

�P̂i�
−1 = −P̂i ,

�Lz�
−1 = −Lz.

(33)

The first relation immediately implies that for non-constant potentials �H�−1 �= H and
thus time reversal symmetry breaking. A detailed example of this is worked out when the
formalism is applied to the harmonic oscillator.

7
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5. Applications

5.1. Free particle

Let us consider the Schrödinger equation for a free particle

i h̄
∂

∂t
|ψ, t) = Ĥ |ψ, t), (34)

where

Ĥ = P̂ 2

2m
. (35)

As usual the time dependence can be factored out

|ψ, t) = e−iEt/h̄|ψ), (36)

where the time-independent wavefunction |ψ) satisfies the time-independent Schrödinger
equation

P̂ 2

2m
|ψ) = E|ψ). (37)

The solution is a non-commutative plane wave

|ψ) = eθ |k|2/2 eik̄b eikb†
, (38)

where k = 1√
2
(k1 + ik2) is dimensionless and the energy dependent part of the divergent

normalization (ψ |ψ)1/2 = trc e−θ |k|2/2 has been included. The energy is given by

E = h̄2|k|2
mθ

= p2

2m
, (39)

where the last step introduced the dimension-full momentum P |ψ) =
√

2
θ
h̄k|ψ) ≡ p|ψ).

The spectrum is therefore identical to that of the commutative free particle as is well known.
According to our interpretation of section 2 the probability to find the particle at

z = 1√
2θ

(x1 + ix2) is

P(x1, x2) ∝ (ψ |z) e
←
∂ z̄

→
∂ z (z|ψ). (40)

Using the Hadamard formula for two operators A and B

eBA e−B = A + [B,A] + 1
2! [B, [B,A]] + 1

3! [B, [B, [B,A]]] . . . (41)

the exponentials can be re-ordered to yield

(z|ψ) = e−|k|2/2 eikz̄+ikz̄. (42)

We now find that the probability P(x1, x2) is independent of (x1, x2) as expected for a free
particle.

5.2. Harmonic oscillator

The Hamiltonian of the non-commutative harmonic oscillator is

Ĥ = 1

2m
P̂ 2

1 +
1

2m
P̂ 2

2 +
1

2
mω2X̂2

1 +
1

2
mω2X̂2

2, (43)

where m and ω are, respectively, the mass and frequency.
It is convenient to rewrite the Hamiltonian as follows

Ĥ = 1

2m

(
P̂ 2

1 + P̂ 2
2 + X̂′2

1 + X̂′2
2

)
, (44)

8
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where X̂′
1 = mωX̂1 and X̂′

2 = mωX̂2 satisfy the algebra

[X̂′
1, X̂

′
2] = i m2ω2θ,

[X̂′
1, P̂1] = i mωh̄,

[X̂′
2, P̂2] = i mωh̄,

[P̂1, P̂2] = 0.

(45)

The natural procedure to follow from here is to introduce creation and annihilation operators
that diagonalize the Hamiltonian as in the commutative case. Set

2mĤ = ZT Z, (46)

where the transposed vector ZT = (X̂′
1, X̂

′
2, P̂1, P̂2). Creation and annihilation operators

V T = (
Â1, Â

‡
1, Â2, Â

‡
2

)
are introduced as linear combinations

V = SZ. (47)

These operators should satisfy the Fock algebra[
Âi, Â

‡
j

] = δi,j . (48)

Define V ‡T = (
Â

‡
1, Â1, Â

‡
2, Â2

) = V T � with

� =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ . (49)

We have V ‡ = S∗Z, which yields from (48)

SgS† = D, (50)

where

D =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠ (51)

and

gi,j ≡ [Zi, Zj ] =

⎛
⎜⎜⎝

0 i m2ω2θ i h̄mω 0
−i m2ω2θ 0 0 i h̄mω

−i h̄mω 0 0 0
0 −i h̄mω 0 0

⎞
⎟⎟⎠ . (52)

It follows that S−1 = gS†D and the Hamiltonian becomes

2mH = ZT Z

= (V ‡)T (S†)−1S−1V

= (V ‡)T DSg2S†DV. (53)

Since g is Hermitian and g∗ = −g, its eigenvalues are real and come in two pairs (λ1,−λ1)

and (λ2,−λ2) , λ1, λ2 � 0, and the corresponding eigenvectors
(
u+

1, u
−
1

)
and

(
u+

2, u
−
2

)
are

orthogonal. Setting the columns of S† to be the normalized eigenvectors of g divided by the
square root of the absolute value of the corresponding eigenvalue, i.e.

S† =
(

u+
1√
λ1

,
u−

1√
λ1

,
u+

2√
λ2

,
u−

2√
λ2

)
, (54)
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we solve (50) and the Hamiltonian becomes

Ĥ = λ1

2m

(
2Â

‡
1Â1 + 1

)
+

λ2

2m

(
2Â

‡
2Â2 + 1

)
. (55)

The explicit form of λ1, λ2 are

λ1 = 1
2 (m2ω2θ + mω

√
4h̄2 + m2ω2θ2),

λ2 = 1
2 (−m2ω2θ + mω

√
4h̄2 + m2ω2θ2),

(56)

while the creation and annihilation operators are given by

Â1 = 1√
K1

(
−λ1

h̄
X̂1 − i

λ1

h̄
X̂2 − iP̂1 + P̂2

)
,

Â
‡
1 = 1√

K1

(
−λ1

h̄
X̂1 + i

λ1

h̄
X̂2 + iP̂1 + P̂2

)
,

Â2 = 1√
K2

(
λ2

h̄
X̂1 − i

λ2

h̄
X̂2 + iP̂1 + P̂2

)
,

(57)

Â
‡
2 = 1√

K2

(
λ2

h̄
X̂1 + i

λ2

h̄
X̂2 − iP̂1 + P̂2

)
, (58)

with

K1 = λ1

(
2λ1θ

h̄2 + 4

)
, K2 = λ2

(
−2λ2θ

h̄2 + 4

)
. (59)

In the commutative limit (θ = 0) this reduces to the usual result as λ1 = λ2 = h̄mω.
The next step is to determine the ground-state wavefunction ψ0, which must satisfy the

following conditions

Â1ψ0 = 0, (60)

Â2ψ0 = 0. (61)

We make the ansatz

ψ0 = eαb†b, (62)

where α is to be determined. From (57) the condition

Â1ψ0 = 0, (63)

reads (
λ1

h̄
(X̂1 + iX̂2) − i(P̂1 + iP̂2)

)
ψ0 = 0 (64)

or, equivalently,

λ1

h̄

√
2θbψ0 − h̄

√
2

θ
[b,ψ0] = 0. (65)

Using

[b,ψ0] = (1 − e−α)bψ0, (66)

we have (
λ1

h̄

√
2θ − h̄

√
2

θ
(1 − e−α)

)
bψ0 = 0, (67)

10
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and thus

e−α = 1 +
θ

h̄2 λ1. (68)

The same procedure applied to

Â2ψ0 = 0 (69)

gives

eα = 1 − θ

h̄2 λ2. (70)

From (56) it is easily verified that (68) and (70) are consistently solved by

α = ln

(
1 − θ

h̄2 λ2

)
= − ln

(
1 +

θ

h̄2 λ1

)
.

Using x̂2
1 + x̂2

2 = θ
(
2b†b + 1

)
, the ground-state wavefunction can be written, up to an

irrelevant constant, as

ψ0 = e
α
2θ

(x̂2
1 +x̂2

2 ). (71)

In the commutative limit this yield the standard result

ψ0 = e− mω
2h̄ (x̂2

1 +x̂2
2 ). (72)

The creation and annihilation operators transform as follow under a rotation

[Lz, Â1] = h̄Â1,[
Lz, Â

‡
1

] = −h̄Â
‡
1,[

Lz, Â
‡
2

] = h̄Â
‡
2,

[Lz, Â2] = −h̄Â2,

(73)

from which it follows that that Lz also commutes with the Hamiltonian. Clearly A
‡
1 creates

states with angular momentum −1, while A
‡
2 creates states with angular momentum +1 in

units of h̄

The angular momentum of the ground state is easy to find

Lzψ0 =
(

X̂1P̂2 − X̂2P̂1 +
θ

2h̄
P̂ 2

1 +
θ

2h̄
P̂ 2

2

)
ψ0

= − h̄

θ
x̂1[x̂1, ψ0] − h̄

θ
x̂2[x̂2, ψ0] +

h̄

2θ
[x̂2, [x̂2, ψ0]] +

h̄

2θ
[x̂1, [x̂2, ψ0]]

= − h̄

2θ

[
x̂2

1 + x̂2
2 , ψ0

] = 0. (74)

Therefore, as expected, the ground state carries zero angular momentum. The full spectrum,
including the angular momentum of states, is now obtained by acting with A

‡
1 and A

‡
2 on the

ground state.

Using (56) and the relation
√

K2
K1

= λ2
λ1

following from it, one verifies that the creation and

annihilation operators transform as follow under time reversal:

�Â1�
−1 = −Â2,

�Â
‡
1�

−1 = −Â
‡
2,

�Â2�
−1 = −Â1,

�Â
‡
2�

−1 = −Â
‡
1.

(75)
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As λ1 �= λ2 for θ �= 0, it follows from these relations that �H�−1 �= H and thus that time
reversal symmetry is broken when non-commutativity is present.

The probability to find the particle at position z = 1√
2θ

(x1 + ix2) is given by

P(x1, x2) = (ψ0|πz|ψ0) ∝ (ψ0|z) e
←
∂
∂z̄

→
∂
∂z (z|ψ0). (76)

We have

(z|ψ0) = (ψ0|z) = 〈z|ψ0|z〉 (77)

= e−zz̄/2〈z| eeαzb† |0〉 (78)

= e−(1−eα)|z|2 = e− λ2θ

h̄2 |z|2
. (79)

This yields for the probability

P(x1, x2) ∝ e[( λ2θ

h̄2 )2−2 λ2θ

h̄2 ](x2
1 +x2

2). (80)

In the commutative limit this yields the standard result

P(x1, x2) ∝ e
−mω

h̄
(x2

1 +x2
2 ). (81)

Another interesting limit is the sharply confining potential when ω → ∞. In this case one
finds

P(x1, x2) ∝ e− 1
2θ

(x2
1 +x2

2 ). (82)

In contrast to the commutative case where the probability tends to a Dirac delta function in
this limit, the non-commutative case yields a Gaussian localized on the scale of θ . This is to
be expected as the non commutativity does not allow localization on a smaller scale.

6. Conclusion

We have established a consistent formulation and interpretational framework of non-
commutative quantum mechanics. This framework was demonstrated for the case of a free
particle and the harmonic oscillator. The results found conform to one’s expectations of
the behavior of a non-commutative system and in all cases reduce to the standard commutative
result in the limit θ = 0. Apart from the result for the position probability distribution in the
ground state of the harmonic oscillator, which, as far as we can establish, is new, the results
presented here for the free particle and harmonic oscillator are known in the literature [23–30].
However, it should be pointed out that these results were obtained by performing a Bopp
shift, which expresses the non-commuting coordinates as linear combinations of commuting
coordinates and momenta. This presents two problems, one conceptual and the other technical.
The conceptual problem is that the commuting coordinates and momenta have no clear physical
interpretation, which also obscures the physical interpretation of the quantum system. The
technical problem is that this transformation introduces for any non-trivial potential a highly
non-local Hamiltonian. Indeed, only the harmonic oscillator has been solved successfully
with this technique. In contrast to this the present approach presents a consistent formulation
and interpretational framework for non-commutative quantum mechanics, which includes an
unambiguous description for position measurement. Furthermore the current formulation has
been applied successfully to much more difficult potentials such as the spherical well [16] and
it has led to an unambiguous formulation of the path integral representation for the propagator
[31].
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